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Executive Summary 

In this research we apply two different binary classification approaches to a dataset 

as provided by [1] describes a collection of features obtained from digitised images 

of breast mass samples extracted via fine needle aspiration (FNA) [2]. The 

overarching purpose is to develop a pair of machine learning models capable of 

classifying if a given sample is benign or malignant in nature. The two approaches 

employed are that of the Optimal Sparse Decision Trees (OSDT) [3] and Random 

Forest Classifier [4]. These models were then compared against one another in 

terms of both accuracy and interpretability. 

 

We shall show that, although the OSDT algorithm produced good result, the Random 

Forest Classifier outperformed in terms of accuracy but was far less interpretable 

when both were trained against the same data under a 10-fold cross validation 

process. The data was sourced from the UCI Machine Learning Repository [1] and 

has been utilised in accordance with the CC BY-NC-SA 4.0 [5] creative commons 

licence which permits the building upon the published material if the use is credited 

and for non-commercial purposes. Though the data pertains to medical samples 

acquired from human beings, care must be taken to avoid exposure of a patient’s 

identity as part of this research. The dataset contains no Personally Identifiable 

Information (PII), as such, no mitigation is required. 

 

I have received no funding from any party in relation to this research project. As 

such, in line with the University of York’s Code of Ethics [6] I submit that this work 

meets the ethical requirements required as part of the MSc Computer Science with 

Artificial Intelligence programme.  
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Introduction 

Artificial Intelligence (AI) is being applied to an increasing number of facets of our 

lives [7]. From scenarios such as recommendation engines through to complex 

systems designed to drive vehicles on public roads, there seems to be no end to the 

scope and variety of the tasks that AI techniques are being applied to. It is natural 

that these scenarios exist on a spectrum between what are referred to as low stakes 

towards those that would be described as high stakes. For example, a private 

individual may have less interest in YouTube’s recommendation engine providing 

appropriate and interesting content than they would be a system charged with 

detecting the presence of malignant cancers within tissue samples. 

 

AI is a field of Computer Science and includes the sub-field of Machine Learning 

(ML) [8]. In many typical programming scenarios, the programmer is in possession of 

two elements, namely the rules to apply and the data over which to apply those 

rules. The concept of ML is that the computer is provided with the data and attempts 

to discover the rules through several mechanisms [9]. The varying approaches that 

can be applied to ML align with different sets of problems, the approach of 

supervised learning is applicable in scenarios where the computer has access to 

both the data and the correct outcome [10]. From these two inputs the goal is to train 

an ML model which can be used to predict the outcome for previously unseen, or 

novel, data. The more successful the model is at correctly predicting unseen data, 

the more generalised that model is said to be [11]. 

 

ML models can produce undesirable results or raise worrying questions. Recently, 

Twitter made use of an ML model which, when applied, exhibited a racial bias during 



the cropping of images [12]. An individual’s life chances could be extremely 

negatively impacted by the misclassification of a tissue sample as benign instead of 

malignant. In instances where an individual has been harmed or exposed to potential 

harm it is reasonable for that individual and applicable regulatory bodies to ask the 

question as to why this happened such that suitable action can be taken. Viewed 

from a different perspective, content recommendation engines should promote 

content in an ethical fashion. It would not be reasonable if content produced by white 

men in their early 20s would be recommended over other options based on the 

ethnic group of the creator. Developers of and researchers in AI systems may be 

able to build better systems and refine approaches if those systems have an ability 

to describe why model outputs have been determined. This need for explainability in 

systems has been known for many years, was acknowledged during the 

development of expert systems during the late 1970s and early 1980s [13], and 

within the field of AI is the focus of the sub-field of eXplainable Artificial Intelligence 

(XAI). These stakeholder classifications, described more fully by Preece, Harborne, 

Braines, Tomsett, and Chakraborty [13], possess differing priorities and therefore 

different requirements and expectations of XAI. This complexity shows a clear need 

for further research in this area. 

 

Rudin [14] asserts that although much attention has been paid to the explainability of 

black box ML models that these efforts may ultimately harm the use of such models 

in society. For the widespread use of AI within our lives to be acceptable, it is 

necessary for society to largely trust those deployed models. The more critical a role 

the model performs, the higher the need for that model to earn and retain the trust of 

society. To this end Rudin urges, rather than continue to leverage black box 



techniques and then layer on additional mechanisms to extract explanations, that 

interpretable techniques be preferred and especially so in high stakes arenas. While 

there are multiple key issues listed regarding Explainable ML [14], the core issue to 

be focussed on is the first from their paper. Specifically, the assertion that “It is a 

myth that there is necessarily a trade-off between accuracy and interpretability”. The 

use of the word myth here is particularly interesting, the Oxford English Dictionary 

includes this definition [15]: “A widespread but untrue or erroneous story or belief; a 

widely held misconception; a misrepresentation of the truth.”. By asserting that the 

concept of a trade-off existing between accuracy and interpretability is widely held 

but ultimately false is a strong statement and one that appears to warrant some 

investigation. 

 

Investigating such a question will not be simple, nor will any result obtained be 

wholly conclusive. A sensible starting point seems to be applying the algorithm 

devised by Rudin et. al. during their work on Optimal Sparse Decision Trees (OSDT) 

and comparing the ML model acquired against more established, but potentially less 

interpretable alternative approaches. Measuring each ML model against each other 

in terms of both accuracy and interpretability may aid in judging if a trade-off 

between those two metrics is, indeed, a myth. As such, this research will attempt to 

determine the following: 

1) Can the OSDT computation technique developed by Hu, Rudin, and Seltzer 

be applied to build interpretable binary classification ML models? 

2) How do such ML models compare in terms of accuracy versus competing ML 

models developed using an alternative classification technique? 



3) How do such ML models compare in terms of interpretability versus 

competing ML models developed using an alternative classification 

technique? 

 

As the OSDT technique developed in [16] can only be used to solve for binary 

classification problems, this work will necessitate the use of a dataset compatible 

with binary classification. This is to say that the model will be able to predict which 

one of two possible outcomes is most appropriate given the input data. There are 

several options available to develop a competing model as binary classification is 

such a deeply researched scenario and we shall discuss a few of these options 

within this paper. 

 

Literature Review 

While much research continues to be performed in the arena of XAI, there are some 

fundamentals problems which need to be met and overcome. Within [17] the point is 

made that interpretability and explainability are at times used interchangeably, but 

that explainability extends from interpretability. Suggesting that the goals of 

interpretability satisfy the Developer and Theorist stakeholder communities identified 

by [13], and explainability is for the benefit of the Ethicist and User communities 

defined in the same paper. For any reasonable conversation to take place, we need 

to agree upon what is meant by interpretable and explainable. This is acknowledged 

in [13] [14], and [18]. For the purposes of this research, we shall utilise the definition 

as presented in [14]. Specifically considering that an interpretable ML model is one 

that is constrained to a domain language such that an expert in that domain could 

find the description of the model understandable. The description provided by such a 



model would be clear to a domain expert and they would be able to determine if the 

mechanisms employed seem reasonable, valid, and ethical. Explainability will 

therefore be described as a post-hoc analysis of a decision to determine how such a 

decision was determined. 

 

Some models are inherently more interpretable than others, largely this correlates 

with whether the model is a white box or a black box. A white box model, also 

described as being a transparent model, can have its inner workings inspected and 

reasoned about [19]. The definition of interpretability we have aligned with from [14] 

aligns with this property well and should satisfy the Ethicists [13] particularly as a 

given model can be inspected to determine if non-ethical features are being 

leveraged during a decision making process. 

 

For example, race should not be considering during a bank loan application process, 

an interpretable model would expose this prejudicial feature consideration quickly. 

Conversely a black box or opaque model has inner workings which are not made 

available or are so complex as to be impractical for a human being to reason about. 

Deep neural networks can often make it difficult to understand why a particular 

decision has been made as the number and type of layers, the activation functions 

and weights being applied results in a large and complex function. A human being 

attempting to determine the “why” of a decision would find it hard to operate with this 

level of complexity. Significant effort has been spent developing mechanisms by 

which black box models can be made explainable. 

 



An example of one of these techniques is permutation feature importance [20] 

where, during training time, the model’s error rate is checked as a feature is 

permuted. If a given variable is found to be highly indicative of the model’s decision, 

then it is likely that that variable is of more importance within the domain being 

modelled. However, as this determination is made during training time, when the 

correct decision is made, it is not possible to predict for all degrees and combinations 

of possible permutation. As such, this technique may lead to incorrect explanations 

when presented with novel data, as is likely to occur once the model is deployed and 

in active use. 

 

Given a trained black box model defined as some function 𝑓(𝑥) and a mechanism is 

utilised to determine an interpretable (or at least more interpretable) companion 

explainer function 𝑒(𝑥) such that an explanation of the black box model can be made 

available. It is desirable that any explainer exhibits high fidelity [21], but if an 

explainer has anything less than 100% fidelity then it must, for some values of 𝑥 yield 

a different output than the black box model function. This is referred to as the “two 

model” problem [22], once trust is lost in an explainer then the interested stakeholder 

or stakeholders would be less likely to rely upon it. It seems reasonable that the 

degree of tolerated divergence between a model and its explainer is related to the 

seriousness of the domain within which the model has been created. 

 

The fidelity required of an explainer within a low stakes domain such as a content 

recommendation engine could be vastly different to that required within a high stakes 

domain i.e. that of a cancer diagnosis model. If a content consumer is exposed to 

recommendations from a poorly performing engine, then the consumer is likely to 



find said recommendations of little use. The danger of a cancer diagnosis model 

incorrectly labelling malignant masses as benign could have real lasting damage to 

the associated patient, conversely incorrectly identifying benign masses as 

malignant increases risks and costs associated with unnecessary medical treatment. 

These high stakes domains would likely require much higher fidelity in any explainer 

associated with a deployed model. 

 

Given the problems associated with attempting to derive explainers with a suitable 

degree of fidelity, it seems likely that the industry should proceed as Rudin directs 

[14] and leverage naturally interpretable techniques rather than continue to leverage 

black box models especially if the domain is deemed to be high stakes in nature. 

However, there are several challenges against this point of view, firstly some 

organisations are in the business of the creation of and charging for the use of 

models they develop. If such an organisation were to provide a product which was 

trivial to reverse engineer, it may have a negative effect on their ability to succeed 

within their chosen market. Tooling such as that being developed and sold by IBM 

[23] is targeted at allowing organisations to leverage common patterns to provide 

explainers, thus continuing to realise the benefits provided by an opaque model. 

Additionally, some problems may not lend themselves to being solved in an 

interpretable manner, for example, reinforcement learning methods receive their data 

in steps, developing and later applying policies to determine what the next best 

action should be [24]. This typically yields a new set of data which goes through the 

same policy execution loop. While it is possible to leverage a rule list or decision tree 

for each grouping of policies, the number of these policies and complexity in 

navigating and selecting the appropriate policy could become problematic. If such a 



mechanism could be developed it could benefit not only the users and ethicists 

associated with a domain, but developers of such models could reduce the search 

space by removing options which lead to undesirable outcomes [25]. Considering the 

upcoming legal requirements being developed with AI in mind such as the Artificial 

Intelligence Act [26], it is likely the interest in and need for continued research into 

XAI will only increase. 

 

A further point of contention within the research is that increasing interpretability 

lowers accuracy. Pintela et al, state that black box ML models which are less 

interpretable are often more accurate [19]. As discussed in the introduction, this 

claim is directly refuted by Rudin [14] and the research contained within this paper 

aims to determine if the downward pressure on accuracy as a feature of interpretable 

models is, as Rudin describes, a myth [14]. To make progress in this area it is 

necessary to determine how accuracy and interpretability are to be compared. 

 

When a binary classifier is tested, there are four possible outcomes: 

 The target was label α and the prediction was label α (True Positive) 

 The target was label β and the prediction was label β (True Negative) 

 The target was label β and the prediction was label α (False Positive) 

 The target was label α and the prediction was label β (False Negative) 

 

The testing outcomes can be visualised by means of a confusion matrix, as seen in 

Figure 1, this gives a quick at-a-glance mechanism by which an individual working 

with, or considering such an ML model to understand that ML model’s performance. 
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Figure 1 - Confusion Matrix 

 

The term accuracy in the second research question is well defined in relation to the 

analysis of binary classifiers. Put simply, the accuracy of such a classifier is the 

number of times the classifier correctly classifies the input divided by the total 

number of classifications made, as shown in Equation 1. The two correct 

classifications are represented as the True Positive and the True Negative segments 

in the Figure 1. Classifiers which yield an accuracy value closer to 1 (100%) are 

preferable over those closer to 0 (0%). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Equation 1 - Accuracy 

 

 



Making a comparison based on interpretability is less well defined, especially as 

there is a reliance upon the interpreter being an expert in the classifier’s domain. In 

the mid-1950s, George A. Miller published a paper [27] which presented the idea 

that a human being could typically process 7±2 items of information at once. This 

rough heuristic, while not considering the capabilities of a domain expert may be 

enough to provide some notion as to how complex a classifier may or may not be. 

 

As Hu, Rudin, and Seltzer have made the implementation of their OSDT [16] publicly 

available [3] that will be the implementation used to address the first research 

question. Binary classifiers have been subject to much analysis and their relative 

performance characteristics have been a key element of that research [28]. 

 

  



Paper Author(s) Pros Cons 
Optimal Sparse 
Decision Trees 
(2019) 

X. Hu, C. Rudin 
and M. Seltzer 

 Introduces and 
uses OSDT  

 Simple 
datasets 

 Analysis of 
interpretability 
is lacking 

 Compares only 
with a single 
other algorithm 
(CART) 

A Comparative 
Study on Various 
Binary 
Classification 
Algorithms and 
their Improved 
Variant for Optimal 
Performance 
(2020) 

V. Bahel, S. Pillai 
and M. Malhotra 

 Complex 
datasets 

 Numerous 
classification 
processes are 
considered and 
compared 

 OSDT is not 
included 

 Analysis of 
interpretability 
is lacking 

Table 1 - Comparison of Papers 

 

During Rudin et al’s production and proving of their OSDT algorithm [16], the 

datasets used were of reasonably low complexity, for example the Compas dataset 

used to predict recidivism is comprised of 12 attributes when prepared for use by the 

OSDT algorithm. It may follow that constructing interpretable ML models from a 

small selection of attributes provides a natural advantage to a decision tree 

attempting to make accurate predictions with as few nodes as possible. Similarly, as 

Bahel, Pillai, and Malhotra [28] compared binary classification algorithms they did not 

make use of any of the datasets used by Rudin et al. As [28] noted that the Breast 

Cancer Wisconsin Diagnostic [1] was found to be the best performing dataset and as 

it has a higher attribute count than any of the datasets used in [25] we shall be 

leveraging the Breast Cancer Wisconsin Diagnostic dataset in order to build upon 

both research papers. The merits and demerits of each paper are summarised in 

Table 1. 

 



Motivation 

The motivation behind this research is to gain greater understanding as to the tools 

and techniques available to AI practitioners in connection with XAI. If we consider the 

recent Payment Protection Insurance (PPI) mis-selling scandal when the regulator, 

the Financial Services Authority (FSA), found that self-regulation of the market had 

failed especially regarding suitability checks [29]. As the use of AI continues to 

expand, decisions models make may well form part of a future scandal. This 

indicates that the need to be able to document explanations captured at the point of 

decision making will increase accordingly. Some of the arenas of our lives that AI will 

be utilised will be of little consequence to us, others will be more important, and 

when an AI makes a mistake, it is reasonable as a society to seek to understand why 

that mistake was made. This mistake could result in a poorly managed investment 

portfolio, a misdiagnosis of a disease, or an immediately catastrophic car accident 

with loss of life and life-altering injuries being a definite possibility. When this 

happens, how we do answer the question – why? Due to the variety of applications 

and the complexity of the decisions being made, applicable techniques and 

mechanism are likely to also be varied in terms of both approach and complexity. 

 

  



Methodology 

To compare the performance of different ML techniques it is feasible to use those 

techniques and the same set of data to train and test competing ML models, by 

contrasting the performance characteristics of the produced ML models we can 

begin to understand which approach to employ. This is similar to the research done 

by Bahel, Pillai, and Malhotra [28] where a number of different algorithms were used, 

and the Random Forest Classifier was found to perform well in this context. To 

answer the first research question, we shall first attempt to build a model using the 

OSDT implementation that is available on GitHub [3]. This classifier has been 

selected as it has previously been shown to perform well against both Classification 

and Regression Trees (CART) and BinOCT classifiers [30]. The appeal of OSDT in 

relation with this work is that traditional decision trees can be prone to overfitting 

their training data [31] and generating large trees. Most decision trees operate in a 

greedy fashion, attempting to make the split at each node which provides the best 

split based on the calculation being employed. Popular choices are Gini Impurity and 

Entropy. Regardless of the choice made, if a split is made early in tree formation that 

later turns out to be a bad split, then additional splits must be performed in order to 

undo this “bad” split. Without backtracking, there isn’t a mechanism to detect and 

undo this costly split and the end result is that the tree becomes larger than it needs 

to be, in turn making it harder to reason about i.e. interpret. 

 

Gini Impurity is a number between 0 and 0.5 which shows the likelihood that new 

data would be considered incorrectly classified based on the distribution in the 

training dataset. For a dataset D containing k classes with the probability of samples 



belonging to the class i being denoted as pi then Gini Impurity is defined in Equation 

2. 

𝐺𝑖𝑛𝑖(𝐷) = 1 − 𝑝  

Equation 2 - Gini Impurity 

 

 
Conversely Entropy is a measure of disorder, which for the same dataset D 

containing k classes with the probability of samples belonging to class i being 

denoted as pi then Entropy is defined in Equation 3. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) = −𝑝 log 𝑝  

Equation 3 - Entropy 

 

As the tree is being constructed, at each potential split and according to the metric 

being employed, the sub-set of data under consideration is interrogated and the best 

split that leads to the lowest Gini Impurity or lowest Entropy depending on the metric 

being used. As there is typically no provision for backtracking, traditional Decision 

Tree algorithms operating in this greedy fashion can miss the realisation the split q 

followed by split r leads to a higher combined reduction in Gini Impurity/Entropy, i.e. 

information gain, than split r followed by split q. To undo this suboptimal split, further 

splits must be made at lower levels to reverse this decision. 

 

The mechanism described in [16] makes available several hyperparameters which 

can be leveraged to tune the mechanisms employed. The property lamb of the 

bbound function is used as part of the mechanism which causes larger trees to be 



penalised. As described in section 3.1 Objective Function of [16], as a tree with Hd 

leaves is multiplied by this factor by selecting smaller values, trees of more 

complexity are allowed to form. The experiments included in the original paper make 

use of several different vectors of lamb values, the collection that is most common is 

given as lambs1 = [0.1, 0.05, 0.025, 0.01, 0.005, 0.0025], we shall apply this same 

set of values while executing our experiments. The other hyperparameter of interest 

is the prior_metric which determines the scheduling policy applied to the priority 

queue controlling the exploration of the search space. The curiosity scheduling policy 

was found to provide the best results within the original paper so we shall apply that 

same policy for our initial experiments. This hyperparameters have been selected as, 

in the context of the lambda value collection it is the most common set of values that 

were applied in the original research, and the curiosity scheduling policy yielded the 

best results. By attempting to keep in line with the original research, it is anticipated 

that the results will be more directly comparable. 

 

In order to have a competition between different models a second model shall be 

required. During the work contained within [28] several techniques suitable for binary 

classification workloads where investigated and it was found that the Random Forest 

classifier won out in terms of performance. As such, our second model will be 

constructed applying this technique. Leo Breiman introduced [4] Random Forests in 

2001, instead of training a single decision tree against the entire dataset the 

approach within this technique is to train many smaller decision trees on different 

subsets of the data. Each of the smaller decision trees are then expected to vote for 

a class and the class with the most votes, in the case of classification problems, is 

returned as the prediction. During formation of the decision trees within the forest 



several steps take place to manipulate the training data seen by each tree. Through 

a combination of sampling (selecting a subset of records) and feature bagging 

(selecting a subset of the features) the likelihood of the decisions trees within the 

forest overfitting is greatly reduced as each individual tree has experienced a sub-set 

of a sub-set of the full training data. This reduction in available data is offset by 

training multiple decision trees within the forest, and the implementation that shall be 

used during this work is Random Tree Classifier [32] which has been included as 

part of the Scikit-Learn platform. By default, the Random Forest Classifier makes use 

of a forest of 100 trees and it shall be this default that is applied, in future research it 

may be interesting to perform the same experiments with forests of differing sizes, 

but for this first step we shall abide by the default values.  

 

The datasets being used during the testing of the various classifiers during the 

production of [28] is available on the UCI Machine Learning Repository, specifically 

the Breast Cancer Wisconsin (Diagnostic) Data Set [33]. We shall be using the same 

dataset for several reasons. It qualifies as being related to a high stakes domain and 

as such merits being supported by either an interpretable ML model or an opaque 

model in combination with a high-fidelity explainer. The dataset contains features 

obtained from a digitised image for a fine needle aspirate (FNA) of a breast mass [2]. 

Each record contains an id number, a diagnosis (either M – Malignant or B – Benign) 

as there are two classes this data is suitable for use with a binary classifier. The next 

thirty attributes then describe several characteristics of cell nuclei, these attributes 

being real values such as radius, symmetry, and smoothness. The values stored are 

the mean, standard error, and worst or largest as computed for each image. The 



groups of ten such attributes are listed in Table 2 and the mechanisms by which are 

they are computed are given in [34]. 

Name Description 

Radius Mean of distances from center to points 

on the perimeter 

Texture Standard deviation of gray-scale values 

Perimeter  

Area  

Smoothness Local variation in radius lengths 

Compactness Perimeter2 / Area – 1.0 

Concavity Severity of concave portions of the 

contour 

Concave Points Number of concave portions of the 

contour 

Symmetry  

Fractal Dimension “coastline approximation” – 1 

Table 2 - Real-Valued Features from Dataset 

 

To prepare the data for use by the algorithm, the ID number attribute shall be 

removed as this is metadata about the record and should not be presented to the 

supervised learning mechanism. The implementation of the OSDT algorithm has a 

limitation in that all features are constrained to be either a 0 (zero) or a 1 (one). The 

dataset being used is made up of 30 data elements, each of which is represented as 

continuous data. Continuous data is data which falls in a continuous sequence, 

including any value within the applicable range. While the class identifiers in the 



dataset ‘B’ and ‘M’ can simply be replaced with a 0 or 1 respectively, in order to 

reduce a continuous range into membership of such a constrained set {0, 1} a 

procedure of unsupervised discretization will be applied utilising a fixed width 

strategy. 

 

The data will be broken into 10 folds for the purposes of k-fold cross validation. k-fold 

cross validation is a useful technique which can be used to help test the performance 

of a given modelling technique. By taking the original dataset and generating k sets 

of random training and test data from it, it is possible to embark upon k training and 

analysis runs without needing k sets of complete data. Upon splitting the previous 

vector of lamb values will be iterated over and the best performing tree for each lamb 

value and fold will be stored along with its evaluation score for later analysis. This 

will yield 10 examples of OSDT, answering the first research question. This also 

mirrors an aspect of the research by Bahel, Pillai, and Malhotra [28] where 10-fold 

was the highest fold degree utilised. Additional research could be performed to 

determine if and how the number of folds utilised also affects the performance of 

trained models. 

 

The same 10-fold cross validation technique will be applied during the training and 

testing of the Random Forest Classifier algorithm, after which the results can be 

compared in terms of accuracy as shown previously. This will allow us to answer the 

second research question. 

 

To answer the third research question, it will be necessary to analyse the resultant 

decision trees yielded from the OSDT approach and select the tree with the best 



accuracy. Once the tree has been identified, the tree shall be diagrammed to allow 

for visual inspection. Special attention will be paid to the number of features upon 

which the tree operates, and this shall be compared against the 7±2 heuristic 

developed by Miller in [27]. Determining the interpretability of the Random Forest is 

likely to be more challenging, while the most accurate forest may be obtainable, the 

tasks of visualising the 100 trees that make up that forest will not lead to an 

interpretable result. This is because 100 is certainly above the 7±2 threshold 

discussed. Instead, the model shall be inspected for permutation feature importance 

in order to provide an explainer, this capability is made possible by the Scikit-Learn 

package [35]. The goal of this will be to attempt to describe which of the features are 

most likely to affect accuracy as they are changed. The features which offer the 

greatest accuracy shift will be identified as those features which have the most 

importance as determined by the Random Forest Classifier.  



Results 

These experiments have been run utilising Docker Desktop 4.15.0 on an AMD 

Ryzen Threadripper 3970X 32-Core Processor @3.70 GHz with 128GB RAM 

running Windows 11 Pro 22H2 with 24 CPUs and 32GB of RAM allocated to the 

Docker platform. 

 

Leveraging the OSDT algorithm proved to be significantly more challenging than 

originally expected. The process of training the ML models took a significant amount 

of time and the data structures used were more complex to understand and work 

with than those presented by the Scikit-Learn provided mechanisms. The OSDT 

algorithm has a time limit after which the improvement searching process is cut short 

and the algorithm returns. This is set to 1,800 seconds in the example 

test_accuracy.py code file [3], which equates to 30 minutes. During the model 

training process with the lambda value of 0.025, this time limit started to be 

encountered so we adjusted the lambda collection to not extend beyond that value to 

prevent that timeout from potentially affecting the results. As such we have access to 

the ten folds being used for fitting and training purposes across each of the three 

largest lambda values {0.1, 0.05, 0.025}. 

  



The accuracy for both the training and testing phases are shown in Table 3. 

Fold Lambda Training 
Accuracy 

Testing Accuracy 

0 0.1 0.91015625 0.666666667 

1 0.1 0.892578125 0.824561404 

2 0.1 0.884765625 0.807017544 

3 0.1 0.892578125 0.824561404 

4 0.1 0.880859375 0.929824561 

5 0.1 0.876953125 0.964912281 

6 0.1 0.880859375 0.929824561 

7 0.1 0.87890625 0.947368421 

8 0.1 0.888671875 0.771929825 

9 0.1 0.8791423 0.946428571 

0 0.05 0.91015625 0.666666667 

1 0.05 0.892578125 0.824561404 

2 0.05 0.884765625 0.807017544 

3 0.05 0.892578125 0.824561404 

4 0.05 0.880859375 0.929824561 

5 0.05 0.876953125 0.964912281 

6 0.05 0.880859375 0.929824561 

7 0.05 0.87890625 0.947368421 

8 0.05 0.888671875 0.771929825 

9 0.05 0.8791423 0.946428571 

0 0.025 0.935546875 0.754385965 

1 0.025 0.923828125 0.859649123 

2 0.025 0.923828125 0.859649123 

3 0.025 0.921875 0.859649123 

4 0.025 0.919921875 0.894736842 

5 0.025 0.91796875 0.929824561 

6 0.025 0.919921875 0.912280702 

7 0.025 0.916015625 0.947368421 

8 0.025 0.923828125 0.877192982 

9 0.025 0.914230019 0.964285714 
Table 3 - Optimal Sparse Decision Tree Classifier Accuracy by Fold 

  



Applying the Random Forest Classification algorithm as made available by the Scikit-

Learn environment was a much easier experience than making use of the OSDT 

algorithm by Rudin et al. This is to be expected as Scikit-Learn is an established 

suite of ML tools for the Python environment. 

 

The accuracy for both the training and testing phases are shown in Table 4. 

Fold Training Accuracy Testing Accuracy 

0 0.97265625 0.859649123 

1 0.96875 0.894736842 

2 0.966796875 0.912280702 

3 0.966796875 0.929824561 

4 0.966796875 0.98245614 

5 0.96875 0.98245614 

6 0.96875 0.929824561 

7 0.962890625 0.964912281 

8 0.966796875 0.964912281 

9 0.968810916 0.982142857 
Table 4 - Random Forest Classifier Accuracy by Fold 

 

The resultant output from executing the experiments along with the directions as to 

how to perform such executions is include within the accompanying artefact, the 

layout of which is described in Appendix A – Contents of artefact Directory. 

 

  



Analysis 

During the data preparation stage, to make the input acceptable to the OSDT 

algorithm it was necessary to discretize the data, this has had two main effects upon 

the data being presented to both algorithms. Firstly, the number of features has 

increased by a factor of five, this is because the arity variable, which is used to 

control the number of bins into which the data is discretized, is set to five in the Data 

Preparation notebook. The second impact is that the nature of the discretization 

applied was fixed width rather than equal frequency. While fixed width was selected 

to prevent identical values from being allocated to different bins, this could leave the 

dataset with empty bins making them irrelevant. This may present the Random 

Forest algorithm more of a challenge as some of the decision trees making up the 

forest may operate on attributes containing no data as each tree is exposed to a 

random subset of those attributes. However, upon analysis the prepared data the 

following summary can be formed, of note is that in each of the training and testing 

datasets there is at least one record with a 1 for each of the features, that is to say, 

none of the features are unrepresented in any of the test files. 

Fold Training Testing 

Unused 
Features 

Benign 
Instances 

Malignant 
Instances 

Unused 
Features 

Benign 
Instances 

Malignant 
Instances 

0 0 346 (68%) 166 (32%) 0 11 (19%) 46 (81%) 

1 0 322 (63%) 190 (37%) 0 35 (61%) 22 (39%) 

2 0 321 (63%) 191 (37%) 0 36 (63%) 21 (37%) 

3 0 328 (64%) 184 (36%) 0 29 (51%) 28 (49%) 

4 0 328 (64%) 184 (36%) 0 29 (51%) 28 (49%) 

5 0 312 (61%) 200 (39%) 0 45 (79%) 12 (21%) 

6 0 316 (62%) 196 (38%) 0 41 (72%) 16 (28%) 

7 0 313 (61%) 199 (39%) 0 44 (77%) 13 (23%) 

8 0 313 (61%) 199 (39%) 0 44 (77%) 13 (23%) 

9 0 314 (61%) 199 (39%) 0 43 (77%) 13 (23%) 
Table 5 - Prepared Data Summary 



 

This has meant that there is an imbalance between the classes present between the 

training and testing datasets for each fold. In the example of fold 0, this imbalance is 

quite marked, the training dataset contains a heavy skew towards benign records, 

whereas the testing dataset exhibits an even stronger skew in the opposite direction. 

While this is the most extreme example, each of the folds show the same potential 

issue to varying degrees, as shown in the table above. 

 

The results in Table 3 are split according to their respective lambda value. The 

lambda property controls the curiosity of the algorithm, the lower the value the more 

likely a sub-optimal (at first glance) split is allowed to be investigated. To understand 

the effect this has on the accuracy we can plot the box chart in Figure 2. 

 

Figure 2 - Effect of Lambda on Model Performance 

 



There are a few interesting points in this data, the first is that the training and testing 

performance for both 0.1 and 0.05 lambda values are identical. We would need to 

perform more analysis to understand why but it may be that the curiosity approach is 

not sufficiently activated until lower values are utilised. It would be interesting to 

extend the algorithm time limit to see if this trend continues as the lambda value is 

reduced further. 

 

Once the lambda value is lowered to 0.025, we do see the performance of the 

generated models increase in the aggregate though the best performing model is 

from the 0.1/0.05 lambda set. The model trained on fold 5 achieved a testing 

accuracy of 96.49%, the best performing model from the 0.025 lambda set achieved 

96.43%. The mean performance of the 0.025 lambda set is over 2 percentage points 

above the 0.1/0.05 lambda set at 88.59, and, as is made clear by the whiskers in the 

previous figure, the standard deviation is much improved, down to 0.0566 (to four 

decimal places) from 0.0929 (to four decimal places). 

 

The results in Table 4 show us that the Random Forest Classifier is consistent at 

fitting a set of decision trees at training time, this is demonstrated by the training 

accuracy across all folds having a mean of 0.9678 (to four decimal places) and 

standard deviation of 0.0024 (to four decimal places). Such a low standard deviation 

shows that the population is very close to the mean i.e., the whole population of data 

points is closely packed around the mean. This can also be visualised from Figure 3 

showing the line showing the training accuracy in per fold being reasonably straight 

between 0.96 and 0.98 with little fluctuation. 

 



 

Figure 3 - Random Forest Classifier Accuracy by Fold 

 

The testing accuracy varies to a much greater extent with only two classifiers 

operating at similar accuracies during both training and testing, these being those 

produced in association with folds 7 and 8. Three classifiers demonstration better 

performance, those trained on folds 4, 5, and 9. With the other classifiers performing 

between 2 and 10 percentage points less well during testing than during training. 

 

Comparing the accuracy by fold of the Random Forest Classifier against the OSDT 

classifiers obtained we can see the difference between the candidate classifiers. 
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Figure 4 - OSDT Classifier Accuracy by Fold - lambda 0.1 and 0.05 

 

Figure 5 - OSDT Classifier Accuracy by Fold - lambda 0.025 

 

By comparing Figure 3, Figure 4, and Figure 5, it is visually apparent that the OSDT 

classifiers underperform when compared to the Random Forest classifier. This is 

apparent in less accurate performances at both the training and testing phases and 

with the testing accuracy especially being more erratic than that produced by the 
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Random Forest classifier. This is further brought home by Table 6 where we 

examine the mean of each classifier and identify the accuracy of the best performer 

(in terms of accuracy) between them at both the training and testing phases. 

Classifier Training 
Mean 

Training Max Testing 
Mean 

Testing Max 

OSDT @ 0.1 / 0.05 0.886547043 0.91015625 0.861309524 0.964912281 

OSDT @ 0.025 0.921696439 0.935546875 0.885902256 0.964285714 

Random Forest 0.967779529 0.97265625 0.940319549 0.98245614 
Table 6 - Accuracy Comparison 

 

This data shows that the best performing Random Forest classifier is over 3.5 

percentage points more accurate that the closest OSDT classifier at training time, 

but this advantage narrows to just under 2 percentage points during testing. 

An interesting phenomenon is that all the classifiers exhibit poor generalisation when 

trained and tested with the folds {0, 1, 2, 3}, it is possible that the data within these 

particular datasets is split in such a way that may prove more difficult to detect a 

suitable classifier. It would be interesting to see if the results could be improved with 

a lower lambda value being made available to the OSDT algorithm, this would 

necessitate increasing the timelimit to allow the algorithm to complete. The Random 

Forest Classifier has a maximum depth of 5 which may well be restricting the ability 

for the data to be fully interrogated by each forest member. 

 

One of the key benefits espoused by the researchers developing the OSDT 

Classifier is that it results in accurate and optimal, or near-optimal decision trees. 

The algorithm itself outputs details of the decision tree generated but the output isn’t 

as readily accessible as output from more established ML algorithms. 

 



The output produced by the algorithm, in the case where a decision tree has been 

produced which is more accurate than the baseline decision tree classifier, includes 

the internal order the attributes are presented in, a set of leaf decision point paths, 

and a prediction for each leaf node. As we consider the output for the best 

performing, in terms of accuracy, model produced through this algorithm when the 

lambda value is set to 0.025, the leaf node paths are described in Table 7. This 

model has been selected as a demonstration as to how interpretable models 

produced by the OSDT algorithm ad models produced at 0.1 and 0.5 lambda were 

solvable with only two leaf nodes. The extra complexity caused by the decision tree 

have a depth greater than one allows us to discuss the mechanism more fully and as 

such provide more value to researcher choosing to build upon this research. 

Leaf Node Path Prediction 
(1, ) 0 (Benign) 
(-17, -1) 1 (Malignant) 
(-1, 17) 0 (Benign) 

Table 7 - Leaf Node Paths 

 

Each of these leaf node paths describe an unordered description of the decision 

points made between the root node and a given leaf node in the decision tree. The 

attribute under consideration in the node can be located by utilising this number in 

connection with the output labelled as ‘the order of x's columns’. For this model, this 

collection is given as: 

[35, 115, 30, 15, 130, 116, 110, 102, 12, 138, 112, 2, 37, 25, 125, 100, 136, 31, 17, 

50, 85, 1, 132, 7, 51, 32, 60, 11, 131, 27, 135, 16, 107, 86, 61, 3, 10, 13, 5, 117, 145, 

0, 127, 103, 126, 139, 65, 142, 105, 75, 137, 123, 66, 121, 140, 113, 38, 22, 76, 146, 

36, 21, 106, 122, 120, 143, 42, 26, 128, 28, 40, 41, 20, 33, 147, 18, 104, 108, 118, 

39, 43, 87, 91, 23, 4, 114, 62, 14, 101, 52, 29, 133, 93, 129, 109, 72, 34, 19, 6, 77, 



44, 90, 64, 144, 67, 69, 54, 47, 81, 124, 149, 74, 79, 119, 94, 80, 92, 46, 57, 98, 58, 

9, 24, 88, 49, 111, 84, 89, 83, 99, 59, 56, 8, 71, 95, 97, 78, 48, 148, 134, 141, 96, 55, 

70, 73, 45, 82, 53, 68, 63] 

 

It should be noted that the lookup to perform here should be done in a manner that 

treats the collection as be 1-based, not 0-based. For example, if the node path 

contained the value 5, it would refer to a node containing a test being performed 

against the 130th attribute in the record, not the 116th. To then understand which 

attribute that is, a 0-based lookup should be performed against the data’s attribute 

set. Specifically in this case, this would resolve to the ‘worst concavity 0.0-0.2504’ 

attribute. For the highest performing OSDT model, the leaf node paths involved the 

1st and 17th indexed values, these resolve to the 35th and 136th attribute in the data 

set respectively. For clarity these are the attributes labelled ‘mean concavity 

0.34144-0.4268’ and ‘worst concave points 0.0-0.05819’. 

 

Once the attributes being considered in each of the nodes, the paths need to be 

arranged such that a binary tree is formed. The sign identifier indicates that the path 

to the leaf is based on the indicated attribute for the record under test being set to 0 

when the sign identifier is negative and 1 when the sign identifier is positive. 

Following this process, we can describe the leaf nodes output by the best performing 

OSDT classifier with lambda set to 0.025 shown in Table 8. 

  



Leaf Node Path Readable Decision Tree Path Prediction 
(1, ) mean concavity 0.34144-0.4268 is 1 0 (Benign) 
(-17, -1) worst concave points 0.0-0.05819 is 0 

and 
mean concavity 0.34144-0.4268 is 0 

1 (Malignant) 

(-1, 17) mean concavity 0.34144-0.4268 is 0 
and 
worst concave points 0.0-0.05819 is 1 

0 (Benign) 

Table 8 - Readable Decision Tree Paths 

 

By analysing the leaf node paths it is possible for us to construct a decision tree in 

diagrammatic form. 

 

Figure 6 - Decision Tree for Highest OSDT Performer with lambda set to 0.025 

 

Once the algorithm’s output has been deciphered and its findings presented in the 

pictorial format shown in Figure 6 it is possible to codify it within an Excel 

spreadsheet into which the test data for fold 9 has been loaded and then analyse 

that output presented in the confusion matrix in Figure 7. 
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Figure 7 - Confusion Matrix for Highest OSDT Performer with lambda set to 0.025 

 

This confusion matrix further explains the performance of this model, there are two 

incorrect classifications. Both of which are problematic in this domain but for different 

reasons and to different extremes. In the case of a false positive a benign sample is 

classified as malignant; this could cause the patient to undergo additional 

procedures and at the very least cause an elevated level of stress to that individual. 

However, a false negative, where a malignant sample has been classified as benign 

could allow the disease to worsen with potentially disastrous outcomes for the 

patient. 

 

Underpinning these results is a model which can be easily interpreted, of the 150 

attributes presented to the algorithm a very successful model has been produced 

which extracts information from just two of those attributes. This model can be easily 



understood by domain experts as to the data points being examined and could also 

serve as a starting point for model developers, employing a different discretization 

strategy or generating a larger number of bins could help improve the sensitivity of 

the model. Sensitivity is the measure as to how well a model identifies instances of 

the positive class i.e. sample which are malignant, it can be calculated by the 

Equation 4. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

Equation 4 - Sensitivity 

 

While subjecting patients to the additional trauma and uncertainty a false positive 

classification would bring is not ideal, it is possible, in this domain, that a false 

negative is deemed more problematic for the patient. This model’s sensitivity at 

92.31% (to two decimal places) is commendable but given the seriousness of the 

disease, would benefit from more research being undertaking to derive better 

performing models. 

 

The Random Forest Classifier is comprised of 100 decisions trees, and those 

decision trees each have a maximum depth of 5, rather than the depth of 2 shown in 

the previous decision tree. The depth of a node in a k-ary tree is the number of 

edges between the tree’s root node and the node in question. Figure 8 shows the 

16th (note this is 0-based) tree from the 100 decision trees from the best performing 

Random Forest Classifier model, note that the ranges described by the data points in 

the decision nodes have been truncated for legibility reasons. 

 



 

Figure 8 - 16th Decision Tree from the best performing Random Forest Classifier 

 

This decision tree is clearly more complex than the tree determined by the OSDT 

algorithm, comprising of nine leaf nodes rather than three and considering eight 

different attributes rather than the two previously discussed. While this decision tree 

is still interpretable, we should remember that the Random Forest is comprised of 

one hundred such trees, each of which effectively votes for a classification and then 

the most voted for classification is then output by the forest as the eventual 

prediction. It is this combination of decision tree outputs that makes this algorithm 

less naturally interpretable than the OSDT algorithm. The Scikit-Learn package 

makes it possible to derive the permutation importance of the attributes within the 

dataset, after applying this mechanism and outputting the resultant diagram, it is 

shown that shuffling the values within the attribute ‘mean perimeter 72.732-101.674’ 

has the greatest effect on the model’s error rate. But it is important to note that it is 

not clear as to why this is the case and if the permutation importance for each of the 

Random Forest is investigated, there are a great many attributes which appear to not 

move the model’s error rate as they are shuffled. This may allow model designers to 

consider removing those attributes from the dataset, but this would require further 

research to determine the effect of such a change. 

 



Conclusion 

It has been shown that it is indeed possible to leverage the work by Hu, Rudin, and 

Seltzer presented in [16] to produce an interpretable binary classification ML model 

with this particular dataset. There are challenges with using this algorithm in its 

current form, these challenges affect the preparation required of the data being 

analysed and the effect this could have on the model performance. 

 

The dataset utilised in this research was comprised of an identifier, which was 

excluded, a classification target, and 30 attributes containing continuous data. These 

attributes were aggregations across 10 attributes covering the mean, standard error, 

and “worst” of those attributes. The OSDT algorithm is limited to being able to 

operate on attributes containing only values from the set {0, 1}. While the 

classification target could easily be reduced to this set, the 30 continuous data points 

were more problematic, and the handling of those data points could very well affect 

the algorithm’s performance in terms of accuracy and in terms of processing time. 

 

Accuracy could be affected by the incorrect placement of bin terminators within the 

dataset. While performing discretization with a consistent bin width does prevent the 

issue of instances with the same value being placed into different bins, it does 

potentially ignore the underlying distribution of each attribute. However, care should 

be taken when aligning bins to the training dataset as it may promote overfitting to 

that dataset. 

 

Processing time was found to be problematic while executing the OSDT algorithm 

leading to the smaller lambda values being removed from the execution plan. This 



may have been caused, in part, by the increased attribute count from 30 to 150 

following the discretization process. To understand the impact on execution time that 

this number of attributes present will require additional research. 

 

It has also been possible to compare the accuracy of OSDT ML models against 

those generated by the Random Forest algorithm. While one of the OSDT ML 

models did come extremely close to the performance, in terms of accuracy, as the 

best performing Random Forest classification model it has not been possible to 

comprehensively prove or disprove Rudin’s assertion that “It is a myth that there is 

necessarily a trade-off between accuracy and interpretability” it has been impressive 

how well such a simple model as obtained from the OSDT algorithm performs 

against Random Forest ML models. This could mean that this particular binary 

classification problem, that being the classification of samples performed via fine 

needle aspiration, is fairly simple to solve and that applying the Random Forest 

approach is not strictly necessary in this case. Of course, when operating in such a 

high stakes domain as cancer diagnosis, perhaps skewing towards the most 

accurate model available is the reasonable course of action to take. This will depend 

on the risk appetite of misclassifications being weighed against any increased ability 

to provide reasoning behind any classification made. 

 

As the OSDT algorithm is not an approach which is developed to the same level of 

polish as the Random Forest algorithm included as part of Scikit-Learn, it is 

understandable that extracting the details of the model is more involved than simply 

rendering a decision tree to a png file. Once the output of the learning process is 

interpreted and presented in a diagrammatic form, the simplicity offered by the 



models generated by the OSDT algorithm make them for more interpretable than 

those produced by the Random Forest approach. 

 

If the OSDT algorithm could be further enhanced to output data structures natively 

supported by Scikit-Learn it would go a long way to removing this impediment and 

further increase OSDT’s interpretability over Random Forest. Specifically, if it would 

be possible to have decision trees be automatically describable as they are for the 

included Decision Tree Classifier, that would allow a much quicker production of an 

interpretable view of the model’s processing. 

 

Limitations and Future Work 

The results obtained during this research have highlighted the need to perform 

further experiments focussing on the effects different data preparation techniques 

have upon the performance, in terms of accuracy, of the OSDT algorithm. This could 

include different discretization techniques, data segregation techniques, and a 

comparative study as to how the application of these techniques affect the 

algorithm’s performance in terms of accuracy. It was also not possible to complete 

the experiments using the smaller values for the lambda hyperparameter, it is 

possible that by allowing more time for the experiments to complete the resultant 

decision tree could exhibit greater performance. With the results obtained herein, it is 

not possible for us to conclude that the accuracy vs interpretability trade-off is indeed 

a myth or not.  
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Appendix A – Contents of artefact Directory 

The artefact directory, includes the following files and structure: 

 mounted (directory) 

o accuracy (directory) 

Contains the output accuracy calculation obtained during executing the 

experiments 

o diagrams (directory) 

Contains the output rendered diagrams (decision trees and 

permutation importance) obtained during the experiments 

 dtc_tree_{fold}_{lambda}.png 

The Decision Tree Classifier formed during the beginning of the 

OSDT process, in instances where the OSDT algorithm could 

not improve this is useful in understanding the tree structure. 

Named 00 through 09 in place of the {fold} marker and the 

appropriate lambda value is substituted into the {lambda} marker 

 rfc_permutation_importance_{fold}.png 

The Permutation Importance diagram for the Random Forest 

Classifier. Named 00 through 09 in place of the {fold} marker 

 rfc_tree_{fold}_{tree}.png 

The Decision Tree Classifier that votes as part of a Random 

Forest. Named 00 through 09 in place of the {fold} marker and 

000 through 099 for the {tree} marker as the tree index within 

the forest 

o Data Preparation.ipynb 



o The Jupyter notebook containing the pre-processing steps required to 

manipulate the original data into the form expected by OSDT.ipynb and 

Random Forest Classifier.ipynb 

o OSDT.ipynb 

The Jupyter notebook containing the experiments performed that 

leverage the OSDT algorithm 

o osdt.py 

The OSDT algorithm from GitHub 

o Random Forest Classifier.ipynb 

The Jupyter notebook containing the experiments performed that 

leverage the Random Forest Classifier 

o rule.py 

Support file for the OSDT algorithm from GitHub 

o wdbc.data 

The original data as downloaded from Breast Cancer Wisconsin 

(Diagnostic) Data Set 

o wdbc.names 

Describes the original data as downloaded from Breast Cancer 

Wisconsin (Diagnostic) Data Set 

o wdbc-test-{fold}.csv 

Named 00 through 09 in the place of the {fold} marker and related to 

the testing data for the fold numbered (zero based) 

o wdbc-train-{fold}.csv 

Named 00 through 09 in the place of the {fold} marker and related to 

the training data for the fold numbered (zero based) 



 Analysis.xlsx 

A workbook into which the training and test data has been loaded, along with 

the accuracy results for the purposes of investigation and chart production 

 docker-compose.yml 

A means by which a predictable working environment can be provisioned 

including the relevant packages used 

 Fast-Track Ethics Application Approval - Newman20220915.pdf 

The received Fast-Track Ethics Approval 

 README.md 

A document describing the means by which the experiments can be executed 

 Stephen - Fast Track Ethics Form v3 Signed.pdf 

The submitted Fast-Track Ethics Form 

 


